Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 10, 2025
-
The concurrent execution of deep neural networks (DNN) inference tasks on intermittently-powered batteryless devices (IPDs) has recently garnered much attention due to its potential in a broad range of smart sensing applications. While the checkpointing mechanisms (CMs) provided by the state-of-the-art make this possible, scheduling inference tasks on IPDs is still a complex problem due to significant performance variations across DNN layers and CM choices. This complexity is further accentuated by dynamic environmental conditions and inherent resource constraints of IPDs. To tackle these challenges, we present MII, a framework designed for intermittence-aware inference and scheduling on IPDs. MII formulates the shutdown and live time functions of an IPD from profiling data, which our offline intermittence-aware search scheme uses to find optimal layer-wise CMs for each task. At runtime, MII enhances job success rates by dynamically making scheduling decisions to mitigate workload losses from power interruptions and adjusting these CMs in response to actual energy patterns. Our evaluation demonstrates the superiority of MII over the state-of-the-art. In controlled environments, MII achieves an average increase of 21% and 39% in successful jobs under stable and dynamic energy patterns. In real-world settings, MII achieves 33% and 24% more successful jobs indoors and outdoors.more » « less
-
Recent advances in Internet of Things (IoT) technologies have sparked significant interest toward developing learning-based sensing applications on embedded edge devices. These efforts, however, are being challenged by the complexities of adapting to unforeseen conditions in an open-world environment, mainly due to the intensive computational and energy demands exceeding the capabilities of edge devices. In this article, we propose OpenSense, an open-world time-series sensing framework for making inferences from time-series sensor data and achieving incremental learning on an embedded edge device with limited resources. The proposed framework is able to achieve two essential tasks, inference and incremental learning, eliminating the necessity for powerful cloud servers. In addition, to secure enough time for incremental learning and reduce energy consumption, we need to schedule sensing activities without missing any events in the environment. Therefore, we propose two dynamic sensor scheduling techniques: 1) a class-level period assignment scheduler that finds an appropriate sensing period for each inferred class and 2) a Q-learning-based scheduler that dynamically determines the sensing interval for each classification moment by learning the patterns of event classes. With this framework, we discuss the design choices made to ensure satisfactory learning performance and efficient resource usage. Experimental results demonstrate the ability of the system to incrementally adapt to unforeseen conditions and to efficiently schedule to run on a resource-constrained device.more » « less
-
In recent studies aimed at enhancing the analyzability and real-time performance of ROS 2, there has been insufficient emphasis on the importance of different scheduling options, including global, partitioned, and semi-partitioned approaches, particularly when multiple CPU cores are involved. In this work, we enabled the partitioned and semi-partitioned scheduling for ROS 2 multi-threaded executors and discussed the opportunities and the potential issues associated with it.more » « less
-
This paper proposes a Priority-driven Accelerator Access Management (PAAM) framework for multi-process robotic applications built on top of the Robot Operating System (ROS) 2 middleware platform. The framework addresses the issue of predictable execution of time- and safety-critical callback chains that require hardware accelerators such as GPUs and TPUs. PAAM provides a standalone ROS executor that acts as an accelerator resource server, arbitrating accelerator access requests from all other callbacks at the application layer. This approach enables coordinated and priority-driven accelerator access management in multi-process robotic systems. The framework design is directly applicable to all types of accelerators and enables granular control over how specific chains access accelerators, making it possible to achieve predictable real-time support for accelerators used by safety-critical callback chains without making changes to underlying accelerator device drivers. The paper shows that PAAM also offers a theoretical analysis that can upper bound the worst-case response time of safety-critical callback chains that necessitate accelerator access. This paper also demonstrates that complex robotic systems with extensive accelerator usage that are integrated with PAAM may achieve up to a 91% reduction in end-to-end response time of their critical callback chains.more » « less
-
Pellizzoni, Rodolfo (Ed.)Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms.more » « less
An official website of the United States government

Full Text Available